46 resultados para Achilles Tendon

em Publishing Network for Geoscientific


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean acidification is thought to be a major threat to coral reefs: laboratory evidence and CO2 seep research has shown adverse effects on many coral species, although a few are resilient. There are concerns that cold-water corals are even more vulnerable as they live in areas where aragonite saturation (Omega ara) is lower than in the tropics and is falling rapidly due to CO2 emissions. Here, we provide laboratory evidence that net (gross calcification minus dissolution) and gross calcification rates of three common cold-water corals, Caryophyllia smithii, Dendrophyllia cornigera, and Desmophyllum dianthus, are not affected by pCO2 levels expected for 2100 (pCO2 1058 µatm, Omega ara 1.29), and nor are the rates of skeletal dissolution in D. dianthus. We transplanted D. dianthus to 350 m depth (pHT 8.02; pCO2 448 µatm, Omega ara 2.58) and to a 3 m depth CO2 seep in oligotrophic waters (pHT 7.35; pCO2 2879 µatm, Omega ara 0.76) and found that the transplants calcified at the same rates regardless of the pCO2 confirming their resilience to acidification, but at significantly lower rates than corals that were fed in aquaria. Our combination of field and laboratory evidence suggests that ocean acidification will not disrupt cold-water coral calcification although falling aragonite levels may affect other organismal physiological and/or reef community processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using a Bongo-Net equipped with a multiple coded closing device, the vertical distribution of siphonophores has been observed in 100 m depth intervals at 13 stations off Cap Mirik (19°N) (from 0-500 m depth). This distributional pattern of the 15 siphonophores species found is discussed in relationship to the hydrography of this upwelling region. The following main features have been observed in comparision with the warmer oceanic water offshore: (1) a lower diversity, (2) a shallower distribution of some of the deep living species die to the lower temperature in the upper 300 m an a lower transparency, (3) no contribution to acoustic scattering by physonect siphonophores.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years a global increase in jellyfish (i.e. Cnidarians and Ctenophores) abundance and a rise in the recurrence of jellyfish outbreak events have been largely debated, but a general consensus on this matter has not been achieved yet. Within this debate, it has been generally recognised that there is a lack of reliable data that could be analysed and compared to clarify whether indeed jellyfish are increasing throughout the world ocean as a consequence of anthropogenic impact and hydroclimatic variability. Here we describe different jellyfish data sets produced within the EU program EUROBASIN, which have been assembled with the aim of presenting an up to date overview on the diversity and standing stocks of North Atlantic jellyfish. Abundance and species composition were determined in samples collected in the epipelagic layer (0- 200m), using a net well adapted to quantitatively catching gelatinous zooplankton. The samples were collected in spring-summer (April-August) 2010-2013, in inshore and offshore North Atlantic waters, between 59-68LatN and 62W-5ELong. Jellyfish were also identified and counted in samples opportunistically collected by other sampling gears in the same region and in two coastal stations in the Bay of Biscay and in the Gulf of Cadiz. Continuous Plankton Recorder (CPR) samples collected in 2009-2012 were re-analysed with the aim of identifying the time and location of jellyfish blooms across the North Atlantic basin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report iron measurements for water column and aerosol samples collected in the Sargasso Sea during July-August 2003 (summer 2003) and April-May 2004 (spring 2004). Our data reveal a large seasonal change in the dissolved iron (dFe) concentration of surface waters in the Bermuda Atlantic Time-series Study region, from ~1-2 nM in summer 2003, when aerosol iron concentrations were high (mean 10 nmol/m**3), to ~0.1-0.2 nM in spring 2004, when aerosol iron concentrations were low (mean 0.64 nmol/m**3). During summer 2003, we observed an increase of ~0.6 nM in surface water dFe concentrations over 13 days, presumably due to eolian iron input; an estimate of total iron deposition over this same period suggests an effective solubility of 3-30% for aerosol iron. Our summer 2003 water column profiles show potentially growth-limiting dFe concentrations (0.02-0.19 nM) coinciding with a deep chlorophyll maximum at 100-150 m depth, where phytoplankton biomass is typically dominated by Prochlorococcus during late summer.